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ABSTRACT

Using a Monte Carlo simulation, it is demonstrated that percentile-based temperature indices computed
for climate change detection and monitoring may contain artificial discontinuities at the beginning and end
of the period that is used for calculating the percentiles (base period). This would make these exceedance
frequency time series unsuitable for monitoring and detecting climate change. The problem occurs because
the threshold calculated in the base period is affected by sampling error. On average, this error leads to
overestimated exceedance rates outside the base period. A bootstrap resampling procedure is proposed to
estimate exceedance frequencies during the base period. The procedure effectively removes the inhomogeneity.

1. Introduction

Successive reports of the Intergovernmental Panel on
Climate Change (IPCC) have made increasingly strong
statements on the human influence on the global cli-
mate. Since the greatest impacts of climate change may
result from the changes in the extremes, rather than in
the mean, analyzing climate extremes becomes very im-
portant. Monitoring, detecting, and attributing changes
in climate extremes requires daily resolution data.
However, the compilation, provision, and update of a
globally complete and readily available daily dataset is
a very difficult task. This comes about, in part, because
not all national meteorological and hydrometeorologi-
cal services are able to freely distribute the daily data
that they collect. Consequently, indicators of climate

extremes have been developed (e.g., Karl et al. 1999;
Peterson et al. 2001) in the hope that they will come to
be more widely obtainable than these daily data from
which they are derived. These indicators have been
used to analyze changes in climate extremes for various
parts of the world (e.g., Jones et al. 1999; Frich et al.
2002; Easterling et al. 2003; Peterson et al. 2002; Klein
Tank and Können 2003; Kiktev et al. 2003).

Several temperature indicators are calculated by
counting the number of days in a year, or season, for
which daily values exceed a time-of-year-dependent
threshold. Such a threshold is usually defined as a per-
centile of daily observations in a fixed base period that
fall within a few Julian days of the day of interest. For
easy comparison of indices across stations with records
of various lengths, and for easy update once new daily
data are available, the thresholds are usually computed
from a common base period, such as 1961–90, for all
stations.

Folland et al. (1999) provisionally recommended a
three-step procedure for the estimation of the thresh-
olds: 1) remove the annual cycle by extracting the 30-yr
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mean values of each calendar day, 2) fit a probability
distribution (such as the three-parameter gamma distri-
bution) to the daily anomalies for each Julian day, and
3) compute the thresholds from the fitted probability
distributions. Folland et al. (1999) also recommended
that data from additional proximate calendar days be
added to improve the stability of the probability distri-
bution parameter estimates but that those days should
be far enough apart such that data from different days
are effectively independent. This method was imple-
mented in Jones et al. (1999), who used five observa-
tions with 5-day intervals between them (referred to as
the 5SD window hereafter). In many other applications
(e.g., Frich et al. 2002; Klein Tank and Können 2003;
Kiktev et al. 2003), thresholds have been estimated us-
ing data from five consecutive days centered on the day
of interest (referred to as 5CD). In either case, the daily
thresholds are, in effect, percentiles estimated from
samples of no more than 5 ! 30 " 150 days of data
when a standard 30-yr base period is used.

Despite the importance of these indicators in the de-
tection and monitoring of climate change, their statis-
tical properties have not been well documented. For
example, what differences would result in the index
time series when 5CD and 5SD windows are used?
Does the fact that the thresholds are “adapted” to (cal-
culated from) the base period cause any systematic dif-
ferences between the statistical properties of the index
time series during the base period (in base) and before
or after the base period (out of base)? Such differences
need to be understood before the indices can be used
with confidence for the purpose of climate change de-
tection and monitoring.

The main objective of this paper is to examine,
through Monte Carlo simulations, the characteristics of
the index time series that are obtained when threshold
functions are estimated with existing methods. We
show that these threshold estimation methods produce
substantial inhomogeneities in the index time series at
the beginning and end of the base period in the sense
that inhomogeneities become clearly apparent when a
large number of station series are averaged (Fig. 1) as
might be done in a climate change detection study. We
propose an approach that corrects the problem. The
remainder of this paper is organized as follows. We
describe existing methods for calculating thresholds
and index time series in section 2. The Monte Carlo
experiment that is used to study the performance of
these methods is also described in this section. Results
are presented in section 3. An improved method for
calculating the index time series is described and evalu-
ated in section 4. Conclusions and discussion follow in
section 5.

2. Methods

a. Threshold function estimation

There are three aspects to consider in constructing an
estimate of the threshold function. The first consider-
ation is the choice of base period. To ensure that index
time series can be easily extended into the future, the
base period is usually chosen to be consistent with a
recent World Meteorological Organisation (WMO) op-
erational climatology base period (e.g., 1961–90 or
1971–2000). Most studies have used the 1961–90 base
period because most indices of climate extremes were
developed in the late 1990s (Karl et al. 1999) and be-
cause there is greater availability of data during this
period than during other operational climatology base
periods.

The second consideration is the type of subsampling
that is used to select the data within the base period
that will be used for threshold estimation. In this study,
we use both the 5CD and 5SD windows. For example,
to estimate the threshold for 13 January, the 5CD win-
dow selects data for all days in the base period dated
11–15 January. In contrast, all base period observations

FIG. 1. Average of exceedance rate of daily values greater than
the 90th percentile in 1000 simulations in which the lag 1-day
autocorrelation has been set to 0.8. Thresholds are estimated us-
ing data from a 5-consecutive-day moving window and the em-
pirical quantile as defined in the text. The first 30 yr are used as
the base period. A jump (increase) in the exceedance rate is ap-
parent at the boundary between the in-base and out-of-base pe-
riods, as indicated by 30-yr averages (thin dashed lines). Because
of this jump, a highly significant trend (thick dashed line) can be
identified if a linear trend is fitted to the exceedance time series,
even though there is no trend in the simulated data.
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dated 1, 7, 13, 19, and 25 January would be selected
when the 5SD window is used. The latter approach uses
only a small portion of available daily data between 1
and 25 January, and thus even though these observa-
tions are likely serially correlated, useful information
has probably been discarded. For this reason, we also
use all daily data available in the 1–25 January time
window (25CD window) to estimate a threshold for 13
January.

The third consideration is the choice of method for
estimating a threshold from a given dataset. One ap-
proach, as used by Frich et al. (2002) and others, is to
use empirical quantiles that are obtained as follows. Let
y(1) ! y(2) ! . . . ! y(n) be the n-sorted daily observa-
tions (i.e., order statistics) for a given day of the year
that have been extracted from the base period with one
of the data windows. In our case, n " 5 ! 30 " 150 for
the 5CD and 5SD sampling methods, and n " 25 ! 30
" 750 for the 25CD sampling method. The empirical
quantile corresponding to the pth percentile is com-
puted by a linear interpolation of two values in the
sorted data closest to the percentile. It is defined as

Qp " #1 $ f %y# j% & fy# j&1%, #1%

with j " !p*(n & 1)" being the largest integer not greater
than p*(n & 1), f " p*(n & 1)$j, and y( j) is the jth
largest value in the sample, for 1 ! j ' n. The empirical
quantile is set to the smallest or largest value in the
sample when j ' 1 or j ( n, respectively. That is, quan-
tile estimates corresponding to p ' 1/(n & 1) are set to
the smallest value in the sample, and those correspond-
ing to p ( n/(n & 1) are set to the largest value in the
sample. Note that there are many different ways to
estimate the empirical quantile corresponding to differ-
ent ways of computing j (Hyndman and Fan 1996; Fol-
land and Anderson 2002).

A second approach (e.g., Folland et al. 1999) is to fit
a distribution to each sample and then to invert the
fitted distribution to estimate the quantiles. As noted
above, Folland et al. (1999) used a three-parameter
Gamma distribution that can take a range of shapes.
We will use the Gaussian distribution in this study be-
cause the data that we use in our Monte Carlo study
have this distribution. Thus the choice of distribution
does not add uncertainty in this study because it is
known a priori. This is not the case in the real world. In
general, uncertainty in the estimated distribution pa-
rameters and the choice of distribution will contribute
to uncertainty in the estimated thresholds.

b. Exceedance indices

Once the threshold function is defined, the exceed-
ance time series is estimated as described in Jones et al.

(1999) and Frich et al. (2002). That is, the index for a
given year, regardless of whether the year is inside or
outside the base period, is the number of days in the
year for which daily values have exceeded the esti-
mated thresholds. As illustrated in Fig. 1, this seemingly
correct approach may actually result in a discontinuity
in the estimated exceedance time series at the bound-
aries between the in- and out-of-base periods. Conse-
quently, trend analysis of these estimated time series
may result in misleading conclusions.

The problem arises because the same base period
observations are used to estimate the threshold func-
tion and in-base values of the index time series. Thus, as
has also been noted in many other statistical applica-
tions in climatology (e.g., the “artificial predictability”
issue discussed in Davis 1976), there is at least the po-
tential for the in-base estimates of the exceedance se-
ries to be biased. Our threshold estimator (no matter
how it is obtained) will be affected by sampling vari-
ability in the in-base sample. Thus the quantile estimate
will never be identically equal to the true theoretical
quantile, regardless of how the quantile is estimated. As
a consequence, the mean out-of-base value of the ex-
ceedance time series will not be equal to the exceed-
ance rate for the theoretical quantile. This means that
while the in-base exceedance rate will be very close to
10% (if not exactly 10%—see below) by construction,
the out-of-sample (out-of-base period) exceedance rate
is unlikely to be exactly 10%.

c. Experimental design

Given that homogeneous time series are essential for
monitoring and detecting climate change and that the
thresholds are computed only from a portion of the
data (usually a 30-yr base period), we designed a Monte
Carlo simulation experiment to reveal whether inho-
mogeneities occur in the exceedance time series at the
boundaries between the in-base and out-of-base peri-
ods. Daily values are usually serially correlated, which
makes the effective sample size smaller than the actual
sample size and hence influences the estimation of the
thresholds and thus also the characteristics of the ex-
ceedance time series. Thus we use an auto regressive
[AR(1)] process as described below to generate daily
data values to also assess this effect.

Let Xt be a zero mean, unit variance AR(1) process

Xt " "Xt$1 & Zt, #2%

with lag 1-day autocorrelation ) and white noise inno-
vations Zt with variance

Var#Zt% " 1 $ "2. #3%
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We use ) " 0.0, 0.2, 0.4, 0.6, and 0.8 in order to study
the impacts of different effective sample sizes. Note
that values of ) estimated from Canadian daily tem-
perature data are typically between 0.6 and 0.8. For
each ) value, 60 yr of daily data are simulated using (2).
The first and second 30-yr periods are assumed to be
the in-base and out-of-base periods, respectively. Time
series of annual exceedance rates are constructed as the
number of days in the year for which daily values ex-
ceed the threshold estimated with (1). This procedure is
repeated 1000 times. We then compare the statistical
characteristics of the simulated exceedance time series
in the two 30-yr periods.

To provide some insight regarding the sources of the
discontinuity observed in Fig. 1, we also conducted a
second set of Monte Carlo simulations as described be-
low to examine the statistical properties and sampling
errors of threshold and exceedance rate:

(a) We simulated 30 yr of autocorrelated daily data
using (2).

(b) Daily data from each simulated year for days 1–5;
for days 1, 7, 13, 19, and 25; and for days 1–25 were
retained to estimate the 90th, 95th, and 99th per-
centiles (Q̂) using the empirical quantile (1). Quan-
tiles estimated in this way have the same properties
as those obtained using the 5CD, 5SD, and 25CD
windows. The probability p̂(X ' Q̂) is obtained by
inverting a standard Gaussian distribution. Note
that 1 $ p̂ is equivalent to the exceedance rate for
the out-of-base period when that period is long.

(c) Steps a and b were repeated 5000 times.

The mean Q̂ " *Q̂/5000, standard deviation +Q̂ "
[*(Q̂ $ Q̂)2/4999]1/2, and bias ,Q̂ " Q̂ $ Q of the
quantile estimates were subsequently computed. The
probability pQ̂ corresponding to the average threshold
pQ̂ " p(X ( Q̂) was also computed by inverting the
standard Gaussian distribution. The difference ,pQ̂

"
pQ̂ $ p represents bias in the out-of-base threshold
exceedance rate that is attributable to bias in the quan-
tile estimate. The actual bias of exceedance rate ,p̂ is
p $ *(1 $ p̂)/5000. Results obtained from these two
experiments are described in the following section.

3. Results

Figure 2 displays the relative bias in the exceedance
rate estimated by using the 5CD window and empirical
quantile. The bias is calculated as the difference be-
tween the average exceedance rate in 1000 simulations
and the nominal rate expressed as the percentage of the
nominal rate (the nominal rate is 10% when an esti-
mate of the 90th percentile is used as the threshold).

The biases are shown for lag 1-day autocorrelation ) "
0.0, 0.2, 0.4, 0.6, and 0.8. Biases for the in- and out-of-
base periods are very different.

In the in-base period, the exceedance rate bias is very
small for some quantiles but is rather large with nega-
tive sign for other quantiles. The bias is not very sen-
sitive to the value of ) because the exceedance rate for
the base period is adapted to the data. The estimated
threshold always lies between the jth and ( j & 1) order
statistic, where j is the integer portion of p(n & 1),
provided that the sample size is large enough. Thus the
relative in-base bias will never be larger than [(1/n) !
(100/1 $ p)]%.This holds regardless of whether we use
the empirical quantile estimates described above, or
another “plotting position” (i.e., another linear combi-
nation of the jth and ( j & 1) order statistics). The in-
base bias varies systematically between zero and this
bound as the percentile is varied.

To understand the cause of this variation, consider
the estimated 90th and 91st percentiles. The number of
exceedances for a sample of size 150 is 15 for the esti-
mated 90th percentile, being equal to the nominal rate
of 10% exactly. However, the number of exceedances
for the estimated 91st percentile would be 13, giving an
exceedance rate of 13/150 " 8.7%, which is smaller
than the nominal rate of 9%. This bias is relatively

FIG. 2. Relative bias in the exceedance rate when thresholds are
estimated by means of the empirical quantile with data from a
5-consecutive-day moving window, as a function of percentiles
for in-base (i_b) and out-of-base (o_b) periods. Labels cor " 0.0,
0.2, . . . , 0.8 indicate that lag 1-day autocorrelation coefficients
) " 0.0, 0.2, . . . , 0.8 have been used, respectively.
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greater for higher percentiles. For example, there
would be only one exceedance over the 99th percentile,
giving an exceedance rate of 1/150 " 0.67%, which is
much smaller than the nominal rate of 1%. Note that
time series of exceedance rate for very high percentiles
(e.g., 99th) also have other statistical properties that
make the series undesirable for trend analysis and cli-
mate change detection. For example, the zero lower
bound will be clearly apparent in these series, making it
difficult to analyze trends with methods that assume a
symmetric error distribution.

In this experiment, and other published studies, the
estimated in-base exceedance rates are obtained by
comparing a portion of the in-base sample data with the
estimated thresholds. Bias in the exceedance rate for
the in-base period will differ slightly from the above
values because data from a moving window is used for
threshold estimation, but additional experiments that
we have conducted (not described above) indicate that
the bias follows the pattern shown in Fig. 2 very closely.
We use the term “rectification error” to denote this
error. Because only the count number is involved, this
bias is not sensitive to the use of different plotting po-
sitions, so long as the estimation of the threshold is
based on interpolation between order statistics. How-
ever, the use of different plotting positions does affect
the mean of the exceedance time series in the out-of-
base period.

One possible approach for avoiding large in-base bi-
ases would be to carefully choose the combination of
the window size and the quantile. However, this would
be difficult to control in real applications where there
are missing data within the base period and also per-
haps an interest in multiple threshold levels. We note
that the rectification error is closely related to sample
size and can be reduced by using a larger sample, that
is, by using a larger window such as the 25CD window.
However, this may have the effect of reducing the am-
plitude and smoothing the annual cycle of thresholds,
particularly in regions where the shape of the annual
cycle is complex. The resulting thresholds may there-
fore have different expected exceedance rates for dif-
ferent calendar days as the annual cycle proceeds, mak-
ing their interpretation more difficult and perhaps com-
promising the interpretation of the resulting index as an
indicator of the frequency of moderate extremes. An-
other possible approach for reducing the rectification
error without increasing the window size is to use a
“fractional” exceedance rate where the integer number
of observations above the threshold is “refined” by
some fraction that depends linearly on the threshold
and the two closest values above and below the thresh-
old.

We repeated the above analyses, this time fitting a
Gaussian distribution to the data from the in-base
sample to estimate the quantile. Results indicate that
quantiles tend to be underestimated, especially when
the sample size is small and when autocorrelation is
large (not shown), but the standard deviation is also
smaller. As a result, exceedance rates for the out-of-
base period are also overestimated. Figure 3 displays
the differences in the exceedance rate between the out-
of-base and in-base periods as a function of percentiles
for different magnitudes of the lag 1-day autocorrela-
tion. It is clear that the jump, a discontinuity in the
mean value of the series at the boundary of in-base and
out-base periods that is caused by a change of bias at
the boundary, cannot be eliminated by estimating
thresholds from a probability distribution that has been
fitted to the in-base data.

The use of a 5SD window for quantile estimation
results in the same amount of bias for the base period as
the 5CD window because the bias is primarily the result
of rectification error, which is an artifact of the size of
the sample selected by the windows. When a 25CD
window is used, the in-base error is greatly reduced
due to the much larger sample size and hence reduced
rectification effects. Note, however, that the possible
effect of the attenuation of the annual cycle of thresh-
olds, which may be large as discussed above, has not

FIG. 3. Differences in exceedance rates between out-of-base and
in-base periods expressed as a percentage of the nominal rate as
a function of percentiles for different magnitudes of the lag 1-day
autocorrelation (cor); E and G identify results that are obtained
when thresholds are estimated with empirical quantiles or by fit-
ting a Gaussian distribution to the data, respectively.
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been accounted for in these experiments. The exceed-
ance rate biases for the out-of-base period are very
similar for the 5SD and 25CD windows. As a result, a
jump in the exceedance series is still apparent at the
boundaries between the two periods (Fig. 4). The mag-
nitude of the discontinuity is much smaller than for the
5CD window.

It appears that there will be a discontinuity in the
exceedance series at the boundary of the in-base and

out-of-base periods, no matter how the thresholds are
obtained. This discontinuity may not be detectable in
individual exceedance time series against the back-
ground of natural interannual variability, but it will be-
come detectable when multiple exceedance time series
are aggregated, as we will demonstrate in section 5.

We now briefly discuss the sources of the biases
documented above. The biases displayed in Fig. 2 for
the out-of-base period are generally positive, with
larger relative biases corresponding to larger values of
) and higher percentiles. These biases are affected by
several factors. One is the bias of the quantile estima-
tor, which affects the bias of the exceedance rate in a
nonintuitive manner. For example, an unbiased quan-
tile estimator will result in a biased exceedance rate
estimator (the appendix). The second factor is sampling
variability. Autocorrelation, when present, affects both
of these factors by reducing the equivalent information
in a sample of a given size.

Results from the second Monte Carlo simulation are
summarized in Table 1. They show that the empirical
quantile (1) is generally positively biased and that the
bias tends to decrease with an increase in ). Table 1
also shows that the standard deviation of the quantile
estimate increases when the percentile increases and
when ) increases. The latter result reflects the fact that
when ) increases, the same size of sample contains less
information about the quantile, that is, the equivalent
sample size is reduced. Finally, we see from Table 1 that
p̂ is always larger than pQ̂. This suggests that the small
negative bias in the out-of-base exceedance rate that is
caused by overestimation of the quantile is more than
overcome by a positive bias that results from sampling
uncertainty in the quantile estimate.

FIG. 4. Differences in exceedance rates between out-of-base and
in-base periods expressed as the percentage of the nominal rate as
a function of percentiles when 5CD, 5SD, and 25CD windows are
used to estimate empirical quantiles. The lag 1-day autocorrela-
tion, ), is set to 0.8.

TABLE 1. Biases (,Q̂) and standard deviation (+Q̂) of quantile estimates, percentage changes in probability corresponding to average
quantile (,pQ̂), and percentage change in estimated exceedance rate (,p̂) in 5000 simulations for 5CD, 5SD, and 25CD windows. The
values for ) " 0.0, 0.4, 0.8 are the lag-1 autocorrelation used in simulating the data. See text for details.

Percentile (%) 90 95 99

) 0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8

5CD ,Q̂ 0.015 0.009 0.005 0.026 0.021 0.008 0.150 0.136 0.050
+Q̂ 0.139 0.166 0.221 0.170 0.195 0.262 0.325 0.342 0.408
,pQ̂ $2.6 $1.6 $0.8 $5.1 $4.2 $1.6 $33.6 $31.0 $12.5
,p̂ $0.5 1.4 4.6 $0.4 2.0 9.7 $9.8 $3.7 33.4

5SD ,Q̂ 0.013 0.012 0.009 0.027 0.026 0.021 0.155 0.161 0.141
+Q̂ 0.139 0.141 0.153 0.172 0.174 0.184 0.319 0.319 0.332
,pQ̂ $2.3 $2.1 $1.6 $5.5 $5.3 $4.4 $34.5 $35.6 $31.9
,p̂ $0.1 0.0 1.0 $0.7 $0.3 1.7 $11.4 $12.9 $6.3

25CD ,Q̂ 0.002 0.000 $0.003 0.005 0.002 $0.003 0.023 0.025 0.003
+Q̂ 0.063 0.080 0.129 0.079 0.093 0.148 0.140 0.154 0.230
,pQ̂ $0.4 0.0 0.5 $1.1 $0.5 0.7 $6.1 $6.4 $0.8
,p̂ 0.0 0.6 2.4 0.0 1.0 4.4 $0.4 0.6 15
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To understand this last point, let -q ( 0, and let Q be
a quantile in the right tail of the probability distribu-
tion. Then, because the probability density decreases
monotonically in the right tail, we find that

.P#X # Q $ $q% $ P#X # Q%/ #

.P#X # Q% $ P#X # Q & $q%/.

This means that if the sampling uncertainty in the quan-
tile estimate follows a symmetric distribution, then the
out-of-base exceedance rate is positively biased even if
the quantile estimate itself is unbiased. Note that quan-
tile estimates for moderately large percentiles do,
roughly, follow a symmetric distribution when the raw
data are Gaussian and sample sizes are the same as
those used in this study.

Autocorrelation, when present, appears to have two
effects, both of which have a tendency to increase the
overall bias in the out-of-base exceedance rate. First,
autocorrelation appears to reduce the bias in the quan-
tile estimate Q̂, which has the effect of reducing or
eliminating the corresponding negative bias in the ex-
ceedance rate. Second, autocorrelation increases the
variability of Q̂, which further increases the bias from
that source as discussed above.

In summary, the overall bias in the out-of-base ex-
ceedance rate results from the bias of the quantile es-
timate and its variability. The former effect appears to
be reduced when the daily data are serially correlated,
but this apparent reduction is overwhelmed by the ef-
fects of increased sampling variability in the quantile
estimate. As a result, the overall bias in the exceedance
rate increases when the observations are positively se-
rially correlated. The positive bias for the out-of-base
period and the tendency for negative bias for the in-
base period result in a jump in the exceedance rate at
the boundaries between the in-base and out-of-base pe-
riods. Relative to the nominal rate, the jump becomes
larger when higher percentiles are used to define ex-
tremes.

4. Removing the “jump”

We have shown that the seemingly simple exceed-
ance time series is actually very difficult to estimate,
and that there is a discontinuity in the expected thresh-
old exceedance rate at the in-base and out-of-base
boundaries. Several approaches may be considered to
solve this problem. One approach would be to choose
the base period entirely outside the period for which
trends are calculated. In practice, this is difficult to
implement since not all stations would have long
enough data to cover such a base period. Alternatively,

one could estimate the thresholds from whatever data
are available for the station. However, this implies the
use of different base periods for different stations, and
it would be difficult to compare indices among the sta-
tions. Another method might be to use a more refined
threshold estimate that has more consistent in-base and
out-of-base exceedance rate properties. Our judgment,
however, is that this would be a difficult task. Our ex-
periments with different data windows, the empirical
quantile estimate using various plotting positions, and a
distribution function quantile estimator all suggest that
this approach will not yield robustly and consistently
improved results.

The fundamental difficulty is that in-base estimates
of the threshold exceedance rate are not fully reliable
estimates of the out-of-sample (out of base) exceedance
rate. This is a familiar problem in climatology (e.g.,
Davis 1976; von Storch and Zwiers 1999) that can often
be resolved by using a bootstrapping or cross-validation
procedure. Thus instead of trying to adjust the thresh-
old, we will attempt to estimate the in-base period ex-
ceedance rates in a manner that mimics exceedance
rate estimation in the out-of-base period. In the latter
case, the sample that is used to estimate the exceedance
rate is independent of the sample used to estimate the
threshold. By doing so, we accept that the mean ex-
ceedance rate will be different from the nominal rate.
This is of secondary concern if a homogeneous index
time series can be obtained for climate change moni-
toring and detection purposes.

Our procedure consists of the following steps:

(a) The 30-yr base period is divided into one “out of
base” year, the year for which exceedance is to be
estimated, and a “base period” consisting the re-
maining of 29 yr from which the thresholds would
be estimated.

(b) A 30-yr block of data is constructed by using the 29
yr base period dataset and adding an additional
year of data from the base period (i.e., one of the
years in the base period is repeated). This con-
structed 30-yr block is used to estimate thresholds.
Note that other resampling approaches for con-
structing a 30-yr block could also be used, perhaps
equally as effectively. For example, one could se-
lect 30 yr from the 29 yr base period by means of
simple random sampling with replacement (simple
bootstrap). If there is concern about interannual
serial correlation, then the block bootstrap (Wilks
1997) is also an alternative.

(c) The out-of-base year is then compared with these
thresholds, and the exceedance rate for the out-of-
base year is obtained.
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(d) Steps b and c are repeated an additional 28 times,
by repeating each of the remaining 28 in-base years
in turn to construct the 30-yr block.

(e) The final index for the out-of-base year is obtained
by averaging the 29 estimates obtained from steps
b, c, and d.

In this way, the year for which the exceedance rate is
to be estimated is not used for estimating the thresh-
olds. By repeating one of the 29 “in base” years, we
insure that the rectification error in the threshold used
to estimate the index in the withheld year is comparable
to the rectification error experienced when calculating
the out-of-base index values. This effectively makes the
estimation of the exceedance rate for both the in-base
and out-of-base periods comparable, greatly reducing
the discontinuity.

Figure 5 shows the differences in the average exceed-
ance rates obtained in 1000 Monte Carlo simulations
between out-of-base and in-base periods when the lag
1-day autocorrelation ) in (2) is set to 0.8 and when
data from different windows are used. The thresholds
used in this example were empirical quantiles. The
jump in the exceedance series is almost entirely elimi-
nated, with a small jump remaining evident only for the
very largest quantiles when the 5-day data windows are
used. The jump is essentially undetectable when the lag
1-day correlation is less than 0.8. Similar results are
obtained when the quantiles are estimated by fitting a
probability distribution to the data (not shown).

5. Conclusions and discussion

We have compared the performances of different
methods of producing temporally homogeneous time
series of exceedance rates. We used both an empirical
probability distribution and also a fitted distribution to
estimate thresholds from data selected with a 5CD (5
consecutive day) moving window, a 5SD (5 days spaced
by 5 days) moving window, and a 25CD (25 consecutive
day) moving window. Our performance evaluation was
conducted with the aid of Monte Carlo simulation ex-
periments. We found that the exceedance rate time se-
ries has discontinuities at the boundaries between the
in- and out-of-base periods if the rate is estimated using
existing methods. Our bootstrap resampling procedure
overcomes this problem and produces much more ho-
mogeneous estimates of the exceedance rate across the
two periods.

The 5CD moving window approach produces the
largest bias in the estimated exceedance rate. The 5SD
moving window that is used in Jones et al. (1999) offers
some improvement for the out-of-base period. But the
bias for the in-base period is the same as for the 5CD
window since the same amount of data is used for the
estimation of quantiles. The 25CD moving window ap-
proach yields the smallest bias for the base period. Note
however that attenuation of the annual cycle of thresh-
olds may become a problem when using large moving
windows and that this effect may introduce large biases
into the exceedance rate time series that might com-
promise its interpretation as an indicator of the fre-
quency of moderately large extremes.

The difference in exceedance rates that results from
using different methods for quantile estimation (em-
pirical quantile or estimation from a fitted probability
distribution) is small. Also, because we are primarily
interested in monitoring change in exceedance rates
over time, homogeneity of the exceedance rate time
series is of substantially greater concern than modest
biases in the exceedance rate, provided that those bi-
ases do not compromise the interpretation of the index
time series as an indicator of the frequency of moder-
ately large extremes. We therefore recommend the use
of an empirical quantile for its simplicity along with the
5CD moving window to estimate thresholds. The ex-
ceedance series for the base period should be estimated
using the bootstrap resampling procedure described
above to avoid discontinuities at the in-base and out-
of-base boundaries.

The inhomogeneity in the exceedance series esti-
mated by existing methods could have profound im-
pacts if the series are used for climate change monitor-
ing and for trend computation in particular. For ex-

FIG. 5. Same as in Fig. 4, except the exceedance rates for the
in-base period are estimated using a bootstrap resampling proce-
dure as described in the text.
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ample, we show in Fig. 6 the average exceedance rates
of daily temperature at 210 stations in Canada. The
thresholds in this case are the 90th and 99th percentiles
(empirical quantiles) of daily temperature that are ob-
tained using the 5CD moving window. The daily tem-
perature data that were used have been homogenized
to remove step changes caused by changes in station
location and/or measurement programs (Vincent et al.
2002). These data have been used previously for ana-
lyzing trends in daily and extreme temperatures (Bon-
sal et al. 2001). The exceedance rates are averaged
across the 210 stations to obtain an extreme index for
Canada. Clearly, the exceedance rates for 1961–90 are

underestimated when the resampling procedure is not
used. In this case, two artificial jumps are apparent in
the time series of spatially averaged exceedance rates,
one at the beginning of the base period and the other at
the end of the period. Note that the jumps are greater
when a higher percentile is used to define the threshold.
The trend in the extreme indices would also be dis-
torted if the existing method is used to estimate the
in-base exceedance rate. The distortion would be
greater if the base period is at the beginning or at the
end of the time series, such as would be the case if
estimating the trend in the index for the last three–four
decades of the twentieth century.

FIG. 6. Number of days on which daily mean temperature exceeded its (top) 90th and (bottom) 99th percentiles
over Canada. Rates for the in-base period computed with the bootstrap resampling procedure described in the text
are shown with the dashed curves. Note that the jump in the 90th percentile series is mainly due to the bias in the
out-of-base estimates, while the biases in both the in-base and out-of-base periods contribute to the jump in the
99th percentile series.
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More importantly, misleading conclusions could be
reached if inhomogeneous indices series are used in
climate change detection studies. The essence of cli-
mate change detection is to identify a weak climate
change signal as simulated by coupled global climate
models in observed data. If extreme indices for both
observed and model-simulated data are computed simi-
larly using existing methods, there would be artificial
jumps in the series obtained from both observed and
model-simulated data. This could easily become a part
of the signal and lead to erroneous or overstated de-
tection claims in a climate change detection study. Al-
though such erroneous results might be preventable by
also including base periods in data for climate variabil-
ity, the presence of artificial jumps will still make results
difficult to interpret. It is therefore important to use our
resampling procedure to eliminate a small, but detect-
able and avoidable, inhomogeneity in the threshold ex-
ceedance indices.
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APPENDIX

An Unbiased Quantile Estimator Results in a
Biased Estimate of the Exceedance Rate

Suppose y1, y2, . . . , yt are identically distributed con-
tinuous random variables (not necessary independent)
with probability density function f and corresponding
distribution function F. Let q) be the (1 $ ))th quantile
of f so that

F #q"% " 1 $ ", and q" " F$1#1 $ "%. #A1%

Let q̂) " q̂)(y1, y2, . . . yt) be an estimator of q), and
define )̂ " P(y ( q̂)) " 1 $ F(q̂)), where y is an
additional random variable with the same distribu-
tion. Then, providing the effective sample size of the
series y1, y2, . . . , yt is large so that | q̂) $ q) | is small,
we have

"̂ " 1 $ F #q̂"% " 1 $ !F #q"% & #q̂" $ q"%F %#q"%

&
1
2 #q̂" $ q"%2F &#q"% & $". #A2%

For some q̂* between q̂ and q, and if f 0 is continues in
the neighborhood of ),

$ " #q̂* $ q%3'6. #A3%

If f 0 is small in the neighborhood of ), which is the case
in the upper tail of most of probability distributions, we
have

"̂ 1 " $ #q̂" $ q"%f#q"% $
1
2 #q̂" $ q"%2f %#q"%. #A4%

It follows that if q̂) is unbiased, then the expected value
of )̂ may be approximated by

E#"̂% 1 " $
1
2

f %#q"%var#q̂"%. #A5%

Thus, for smooth distributions other than the uniform,
we expect )̂ to be biased upward in the upper tail (i.e.,
where f 2 ' 0). Hence the exceedance rate will be biased
when the quantile estimator is unbiased. According to
(A5), the bias is approximately proportional to var(q̂))
and is thus likely to be larger for autocorrelated se-
quences.
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